鎴戣鎶曠ǹ
鎮ㄧ殑褰撳墠浣嶇疆锛主页 > 设计精英 >

香兰素_百度百科

鏃ユ湡锛2019-09-20 12:41 鏉ユ簮:未知 浣滆:admin

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  俗称香草粉, 香草醛,云尼拿粉、香草精、香荚兰素。 从芸香科植物香荚兰豆中提取。白色至微黄色结晶或结晶状粉末,微甜。溶于热水、甘油和酒精,在冷水及植物油中不易溶解。香气稳定,在较高温度下不易挥发。在空气中易氧化,遇碱性物质易变色。

  化学名称为3-甲氧基-4-羟基苯甲醛,具有香荚兰豆香气及浓郁的奶香,起增香和定香作用,广泛用于化妆品、烟草、糕点、糖果以及烘烤食品等行业,是全球产量最大的合成香料品种之一,工业化生产香兰素已有 100多年的历史。香兰素在最终加香食品中的建议用量约为0.2——20000mg/kg。根据我国卫生部的规定,香兰素可用于较大婴儿、幼儿配方食品和婴幼儿谷类食品(婴幼儿配方谷粉除外)中,最大使用量分别为 5mg/ml和7mg/100g。香兰素也可用作植物生长促进剂、杀菌剂、润滑油消泡剂等,还是合成药物和其他香料的重要中间体。除此之外,它还可在电镀工业中用作上光剂,农业中用作催熟剂,橡胶制品中用作除臭剂,塑料制品中用作抗硬化剂和作为医药中间体使用等,应用十分广泛。

  香兰素化学名为4-羟基-3-甲氧基苯甲醛,又名甲基原儿茶醛、香草醛,为一种重要的广谱型高档香料,是截止2019年全球产量最大的香料之一,具有清甜的豆香、粉香气息,可用作定香剂、协调剂及调味剂,广泛应用于食品、饮料、化妆品、日用化学品及医药等行业。在下游行业中的使用比例分别为食品添加剂约50%、医药中间体20%、饲料添加剂20%,其他用途约为10%。

  香兰素是目前全球使用最多的食品赋香剂之一,有“食品香料之王”的美誉,在食品行业中主要作为一种增味剂,应用于蛋糕、冰激凌、软饮料、巧克力、烤糖果和酒类中,在糕点、饼干中的添加量为0.01%~0.04%,糖果中为0.02%~0.08%,焙烤食品最高使用量为220mg·kg

  ,也可作为一种食品防腐添加剂应用于各类食品和调味料中;在化妆品行业,可作为调香剂调配于香水和面霜中;在日用化学品行业,可以用在日化用品中修饰香气;在化学工业上,作为消泡剂、硫化剂和化学前体;还可应用于分析检测,如用来检验氨基化合物和某些酸质;在制药行业,作为屏蔽气味的药剂。由于香兰素本身具有抑菌作用,可作为医药中间体应用于制药工业,包括应用于皮肤病的治疗药物中。香兰素具有一定的抗氧化性和预防癌症的作用,且能参与细菌细胞间的信号传递,未来这些潜在的应用领域将促进香兰素市场需求的快速增长,截止2019年香兰素全球市场年消费量在2万吨左右。

  香兰素密度为1.056,熔点81~82℃,沸点285℃,微溶于冷水,溶于热水、乙醇和,水溶液和三氯化铁作用呈蓝紫色。

  ,分子量152.15。为白色针状结晶,具有优雅的香荚兰豆的香气。在香荚兰、安息香、秘鲁香脂中均有存在。工业生产方法是丁香酚在氢氧化钾存在下生成异丁香酚,然后再与乙酸酐反应生成异丁香酚乙酸酯,再经氧化和水解反应制取。是调配巧克力、冰淇淋、口香糖、糕点及烟草香精的重要原料。亦可作化妆品香料的协调剂和定香剂。也是制药工业原料。

  食品保鲜剂分为天然保鲜剂与化学保鲜剂两类,被用于食品生产、流通、贮藏等过程中以起到保持食品感官性状、提高食用价值、延长贮藏时间等作用。与化学保鲜剂相比较,天然保鲜剂具有对环境无害、生产成本较低、生物相容性好、保鲜效果良好等优势。食品中的香兰素可通过紫外-可见分光光度法、色谱法电泳法等常规方法准确地检出,是一种安全性较高的食品保鲜剂。香兰素在食品贮藏保鲜中的应用可分为抑菌、抗氧化、稳定食品中其他成分及抑制呼吸速率等方面。

  香兰素是一种天然的抑菌剂,在食品领域常结合其他抑菌方法共同作用,且香兰素对不同菌种的抑菌效果不同

  。香兰素的抑菌效果与其浓度、pH值有关,较高的香兰素浓度和较低的pH值均有利于提高香兰素的抑菌作用,香兰素对不同菌种的抑菌效果不同,对比其他菌种,香兰素对大肠杆菌的抑菌效果更好。香兰素对多种酵母菌有抑制作用,高浓度的香兰素有利于提高其抑菌效果,但是高浓度的香兰素不能即时杀灭酵母菌。复合保鲜实现了保鲜剂(或保鲜方法)间的协同作用,是一种能够被普遍接受的果蔬保鲜方法,香料之间的抗菌效果往往有协同作用且用量比单一使用小,例如:对防止黑曲霉污染来说,单独使用香兰素的有效杀菌剂量是0.5%(质量分数,下同),而0.05%的香兰素与0.0025%的桂醛混合物即可发挥杀菌作用。

  香兰素在辅助抑菌、杀菌方面也起到了重要的作用。在现阶段的生产过程中,热杀菌在果汁加工中仍然是最为普遍的杀菌方式,其处理方式一般为巴氏杀菌和高温瞬时灭菌。传统的杀菌方式常会导致果汁中营养成分被破坏、产品褐变等问题。

  结构相似的抗氧化剂的作用机理有所差别,香兰素主要通过氧化产物香草酸来加速对自由基的清除,香兰素具有的抗氧化作用可显著延长含油食品的保质期并且对其酸败味具有掩盖作用。香兰素的同分异构体——邻香草醛(2-羟基-3-甲氧基苯甲醛),被证实具有清除过氧亚硝基阴离子的作用,但并不是很好的自由基清除剂。

  已有研究证明香兰素的反应产物有助于稳定食品中其他成分:白藜芦醇为天然功能性成分,为提高其稳定性并充分发挥功能性作用,以香兰素与壳聚糖反应后形成的网状壳聚糖微球包覆白藜芦醇,有助于控制白藜芦醇的释放;香兰素与氨基的缩合产物具有与金属离子络合的良好能力,能够有效提高其包合的物质的稳定性。

  对于香兰素的抗菌机制的研究主要包括3个方面:作用于细胞膜,破坏膜的完整性;作用于酶,使必需酶失活;作用于遗传物质,使遗传物质失活或结构遭到破坏。

  香兰素中存在的酚醛基,具有疏水性,且pH值越低疏水性越强,能使细胞膜变得不稳定,破坏细胞膜结构,使细胞壁出现凹陷,细胞膜向内突起,细胞质浓缩和空泡形成等。

  但是香兰素对于不同的细胞破坏程度不一样。革兰阳性菌较革兰阴性菌细胞壁厚,交联度高,可有效阻止香兰素进入,而革兰阴性菌结构疏松,且含有较多的脂类,香兰素易与之结合,因此,对革兰阴性菌的抑菌效果明显强于对革兰阳性菌的抑菌效果。

  生物体由细胞构成,每个细胞由于酶的存在才表现出种种生命活动,体内的新陈代谢才能进行。酶催化特定化学反应的蛋白质、RNA 或其复合体,是生物催化剂,绝大多数酶的化学本质是蛋白质,其活性受一些外界条件的影响,诸如pH、盐离子浓度、温度等。香兰素破坏细胞膜导致细胞内环境发生改变,间接的抑制酶的活性,影响细胞体内的新陈代谢,如香兰素会抑制DNA聚合酶的活性。

  绝大多数生物(具有细胞结构的生物和 DNA 病毒) 的遗传物质是DNA,能指导蛋白质的合成,从而控制新陈代谢和生物的性状。香兰素能阻碍微生物延滞期中遗传物质的合成、表达,原因可能是细胞膜遭到破坏,间接的 抑制了参与遗传物质的合成和表达的酶;也有研究表明,香兰素会影响大鼠肝脏中转运蛋白mRNA 的表达。

  香兰素是天然的植物成分,是公认的较安全的食品添加剂。由于其在食品中的添加量较小,截止2015年还没有发现香兰素对人体有害的相关报道。在我国,除在0~6个月婴幼儿食品中不得检出香兰素外,在其他产品中均没有香兰素添加的限制。

  香兰素的安全性与其使用特性密切相关。香兰素有增香、抑菌、抗氧化、稳定食品成分等作用,是一种具有多重功能的天然食品添加剂,且低剂量即可发挥多重作用。香兰素随日常饮食摄入后,能够有效降低实验小鼠血清甘油三酯及与多种脂蛋白结合的甘油三酯水平,且香兰素的有效降血脂使用量与其作为食品添加剂少量添加于食品中的使用量是一致的。有学者提出,小鼠口服香兰素,血液中的抗氧化活性物质水平随着香兰素浓度的增加而升高,表明香兰素的抗氧化性在日常保健方面可能会发挥更大的作用。因此,香兰素所具有的低剂量即可发挥多重作用以及有益健康的特性,是其使用安全性的基础。

  然而,添加香兰素也可能会对果蔬保鲜造成不好的效果,这是香兰素应用中存在的主要问题。据报道,涂有香兰素膜的菠萝10℃条件下贮藏,VC含量快速减少且低于对照组,虽然香兰素处理能增强菠萝的黄色,但在增加果实外观吸引力的同时导致了营养成分的损失。另外,由于香兰素自身具有浓郁的奶香味且遇热不稳定,加入食品中也会对食品原料的固有香气造成影响。在生产中要根据实际情况严格控制香兰素加入量、严格规范生产加工工艺和操作,以免对食品感官品质产生不良影响。对于如何有效避免因香兰素自身特点而带来的问题,还需要在其作用机理、加工工艺等各方面进行深入研究。

  我国已成为香兰素生产和供应大国。1983年,我国制订了香兰素产品的国家标准GB 3861-1983,并于2008年完成改版GB 3861-2008,在2008版的标准中采用了气相色谱法来分析香兰素产品的纯度,要求纯度在99.5%以上。同时,还可以分析出香兰素产品中的愈创木酚、邻位香兰素、5- 醛基香兰素等杂质的含量,对于控制其产品品质十分有利。

  截止2019年全球香兰素总产量近2万吨,我国香兰素的产量约占全球总产量的70%左右,产品生产技术已达国际先进水平。我国生产的香兰素产品具有质量好、性能稳定等特点,且同等香兰素产品价格与国外相比较低,因此在全球市场上有很强的竞争力。我国香兰素每年有近万吨的出口量,在北美、欧洲、东南亚等地享有良好声誉。同时,截止2019年我国的香兰素年消费量在2000~2500t。其中食品工业占比55%,医药中间体占比 30%,饲料、调味剂占比10%,化妆品等占比5%。

  ②用化学方法合成,以工业纸浆废液和石油化学品作为原材料,但化学合成的香兰素香型单一、容易引发环境污染,不符下游应用市场对天然原料的消费趋势。

  香兰素天然存在于香荚兰豆等植物中。可从热带香草兰花的豆荚中提取香兰素,热带香草兰花主要生长在马达加斯加、印度尼西亚和中国等国,由于香草兰花荚植物对土壤及气候因素的要求非常高,而且天然加工的发酵处理工艺复杂,所以香兰素的天然来源非常有限。从天然植物中提取的香兰素产品在全球产量中的占比不到1%;而且香荚兰豆等天然香草植物的种植、采收、提取和制备过程需要大量的劳工,使得其成本是化学合成产品的 100多倍,天然香兰素产品价格也是合成产品的50~200倍。

  香兰素是全球最早合成的香料品种之一。为满足市场的需求,19世纪出现了以邻甲氧基苯酚等作为原料合成的、与天然结构完全相同的香兰素。随着科技的进步,香兰素的生产方式不断完善,化学合成方法有近10种之多,原料来源供应充足,生产技术稳定,市场价格也较低,是市场上主要的香兰素生产方法,其市场份额超过 90%。合成香兰素的生产过程稳定,原料充足,反应机理较明确,主要杂质检测可控制;但不足是产品香型较为单一,缺乏天然香兰素的复合香气。同时,其生产过程中也容易引发环境污染问题。

  以丁香酚、阿魏酸等可再生物质为原料生产的香兰素约占世界产量的5%,由于其可再生性,且质量接近天然产品而受到重视。丁香酚存在于多种天然精油中,其中丁香油、月桂叶油、丁香罗勒油中丁香酚含量最高,樟脑油、紫罗兰油、依兰油和金合欢油中均有存在。由于以丁香酚作为原材料制得的天然级香兰素香气诱人、食用安全且实用价值高,因此受到高端食品饮料市场的青睐。阿魏酸是目前全球最为丰富的酚类化合物之一,广泛存在于木质纤维素、植物细胞壁、玉米和小麦等农作物的细胞壁上,且对微生物的毒性作用小,对于转化生产香兰素是一种较好的底物。以阿魏酸作为底物酶转化生产的香兰素产品工艺简便,具有收效高、低能耗、污染小及食用安全等优点。在世界石油资源日益消耗和枯竭的背景下,以丁香酚、阿魏酸等可再生物质为天然原料生产香兰素的技术的普及对全球香精香料市场具有重要意义。

  以丁香酚、阿魏酸等天然原料制备的香兰素越来越受到高端市场的青睐,全球市场需求量持续增长,截止2019年年需求量为500~600t,其需求主要来自于全球知名的香料香精企业。

  香兰素按生产方法可以分为天然香兰素和合成香兰素两类。天然香兰素主要来自于香荚兰豆与利用天然原料通过生物技术合成两种途径。与合成香兰素相比,天然香兰素的价格是合成香兰素的50-200倍,因此,天然香兰素只在少量有特殊需要的场合使用,实际使用的香兰素主要是合成香兰素。

  香兰素早期生产以从天然原料提取松柏苷、丁香酚黄樟素采用半合成法制取为主;随着天然原料的减少,后来以造纸废液中木质素氧化法生产为主。

  在碱性条件下,将丁香酚异构化生成异丁香酚钠,然后用氧化剂将异丁香酚钠盐氧化成香兰素钠盐,再经酸化处理得到香兰素。氧化剂可选用过氧化钠、高锰酸钾、氧气、高铁酸钾等。氧化过程有直接和间接氧化之分,直接氧化法反应方程式见右图

  间接氧化法是将丁香酚异构化生成的异丁香酚钠,与乙酸酐作用,生成异丁香酚乙酸酯,经氧化后在酸性介质中水解成香兰素。

  另外,还有采用电解异丁香酚钠的方法,该方法所得香兰素香气纯正,但成本较高。

  1938年,美国有公司开始用木质素生产香兰素,采用亚硫酸盐制取纸浆的造纸厂在排放的亚硫酸盐蒸煮废液中,约有50% (指固形物)为木质素磺酸盐。以木质素磺酸盐为原料制备香兰素的反应方程式见右图。

  亚硫酸盐纸浆废液生产香兰素工艺包括浓缩、中和、氧化、酸化、萃取、精制等步骤,此项技术应用已有大半个世纪之久,工艺过程也在不断得到改进。如碱-硝基苯氧化改为空气催化氧化,原料液的浓缩采用超滤新工艺代替加温浓缩传统方法;从氧化液中提取香兰素的后处理工艺,也由碱性萃取法、离子交换提取法及二氧化碳提取法等先进工艺取代较落后的酸性萃取法。

  截止2014年国内外仅有个别造纸厂为了治理造纸废液,采用木质素磺酸盐为原料合成香兰素。木质素法生产过程污染严重,产品质量偏低,生产的香兰素重金属离子含量较高,一般不能用于食品和制药工业,大多数已停产,许多国家也已经放弃这一工艺路线-甲基愈创木酚法

  愈创木酚的化学名称为邻甲氧基苯酚,愈创木酚合成香兰素主要有亚硝化法(ONCB法)和乙醛酸法两种工艺路线年以前我国原有多家香兰素生产企业,采用甲醛和愈创木酚缩合、对亚硝基-N,N-二甲基苯胺氧化法生产,其后随着乙醛酸法工艺技术的应用推广,扩产和新建香兰素项目主要采用愈创木酚-乙醛酸法合成工艺。

  愈创木酚-亚硝化法有原料种类多、工艺流程长、分离过程复杂,反应效率低、工业化生产产品总收率不高(以愈创木酚计约60%)等不足;应用该工艺每生产1吨香兰素产生约20吨的废水(含有酚类、醇及芳香胺、亚硝酸盐),很难进行生化处理,另有1-2吨的固体废渣。在国外因三废问题严重已被淘汰,但在2005年以前仍是我国采用的主要生产方法,后因设备腐蚀及环保要求的提高,国内生产规模较大的厂家相继放弃愈创木酚-亚硝化法,并转而采用愈创木酚-乙醛酸法。

  以乙醛酸和愈创木酚(或乙基木酚)为原料,经缩合反应制得3-甲氧基-4-羟基扁桃酸,3-甲氧基-4-羟基扁桃酸在催化剂作用下,经氧化、脱羧生成 3-甲氧基-4-羟基苯甲醛,然后经分离、提纯、干燥后制得香兰素成品。反应方程式见右图。

  愈创木酚与乙醛酸合成香兰索工艺产生三废较少,后处理方便,收率可达70%,是国内外最常用的方法,国外香兰素产量的70%以上是采用此法生产的。

  2005年以前,国内仅有几家企业中试规模采用乙醛酸法生产香兰素,主要因为国内生产的乙醛酸价格相对较高,且一些关键技术问题如氧化稳定性、废水回用(1吨香兰素产生约20吨废水)、产品收率低等问题尚未很好的解决。2006年后陆续将有企业将生产工艺全部改为乙醛酸法。

  有设计院对乙醛酸法新工艺进行了长期研究,提出采用酸性条件下进行缩合反应;创制了电解氧化亚铜催化剂,使氧化缩合定量进行,氧化亚铜催化剂可循环利用;并采用分子蒸馏技术代替减压蒸馏提高产品收率。随着原料乙醛酸的国内大规模生产,乙醛酸价格走低,香兰素新工艺生产成本也在大大降低。

  截止2014年,国内合成香兰素亚硝基法与乙醛酸法两种工艺都在运行,由于亚硝基法生产过程产生的“三废”较为严重,正处于逐步淘汰中;乙醛酸法已成为合成香兰素的主要生产方法。有报道称,可采用溴化羟基苯甲醛甲氧基化法、 邻乙氧基苯酚电化学法、 微生物法制备香兰素,但未见大规模工业生产的报道。

  以邻苯二酚为反应原料,聚乙二醇、叔胺作相转移催化剂,在碱性条件下经甲基化、赖默-梯曼(Reimer-Tiemenn)反应可以制得香兰素。

  以邻苯二酚为反应原料,先甲氧基(乙氧基)化制得愈创木酚,再经与乙醛酸缩合,氧化脱羧后制得香兰素(或乙基香兰素)。此法亦可看作是愈创木酚-乙醛酸法向起始原料前移。

  考虑到单质溴的腐蚀危害性以及工艺成本,截止2014年该工艺没有投产的实际意义。

  该工艺单溴化过程产生HBr气体,原料溴腐蚀严重,若不能对它们进行回收处理,会造成严重的环境污染;有报道称,采用非溴素H

  /HBr作为溴化剂进行溴化反应,取得了3-溴-4-羟基苯甲醛较高的收率;同时克服了直接采用溴素危害性大,挥发性强的缺点,工艺操作简单、环境污染小。反应方程式见右图。

  另外一种途径是对甲酚氯化,然后与甲醇钠作用,最后氧化得香兰素。该路线反应收率不如前一种高。

  香兰素具有较好的抗菌活性,对大多数常见的微生物均有抑菌或抗菌效果,诸如大肠杆菌( Esche-richia coli) 、李斯特菌( Listeria monotytogenes) 、产气肠杆菌 ( Enterobacter aerogene) 、假单胞菌 ( Pseudo-monas aeruginosa) 、伤寒沙门氏菌( Salmonella enteri-ca subsp) 、纽波特沙门菌( Salmonella enterica serovarNewport) 、蜡状芽孢杆菌( Bacillus cereus) 、灰霉病菌( Botrytis cinerea) 等。香兰素对于不同的菌株有不同的抑菌浓度,有些菌株只有质量分数高达2×10

  时,才会有明显的抑菌效果。香兰素的抗菌活性主要与结构特点有关,其衍生物也具有抗菌活性,如乙基香兰素、香兰素1,2-丙二醇缩醛等也具有抗菌特性。基于香兰素的结构特性可通过化学手段将一些活性基团引入香兰素或其衍生物中进行结构改造,开发的新型抗菌剂具有更低的抑菌浓度,更好的抑菌效果。如以香兰素为原料合成香豆酮和香兰素衍生物新型席夫碱具有更强的抑菌效果。也有研究表明香兰素与植物精油有协同增效的作用,据此可深入研究香兰素与其他抗菌活性物质联合的抗菌剂。总之,香兰素及其衍生物作为一种安全、高效的抗菌剂具有极大的应用潜力,通过与其他抗菌剂联合使用开发新型抗菌剂,其抗菌机制有待进一步系统深入地研究。

  张守文 主编.中华烘焙食品大辞典·原辅料及食品添加剂分册.北京:中国轻工业出版社.2007.第278-279页.

  姚静芳, 穆旻, 张颂培. 香兰素产业发展概况[C]// 第十届中国香料香精学术研讨会. 0.

  吕晓婕. 香兰素行业发展状况[J]. 粮食流通技术, 2019(7).

  农业大词典编辑委员会 编.农业大词典.北京:中国农业出版社.1998.第1824页.

  王大全 主编.精细化工辞典.北京:化学工业出版社.1998.第766页.

  吕佳煜, 宋莎莎, 冯叙桥, et al. 香兰素在食品贮藏保鲜中的应用研究进展[J]. 食品科学, 36(17).

  陈朋, 李素岳, 严晓娟, et al. 香兰素抗菌机制研究进展[J]. 微生物学免疫学进展, 2014(2):50-53.

鐑棬鎺ㄨ崘
闅忔満鎺ㄨ崘
鏈鏂版枃绔